# Predictors of early mortality in multiple myeloma: Results from the Australian and New Zealand Myeloma and Related Diseases Registry (MRDR)

Zoe McQuilten<sup>1</sup>, Cameron Wellard<sup>1</sup>, Elizabeth Moore<sup>1</sup>, Brad Augustson<sup>2</sup>, Krystal Bergin<sup>3</sup>, Hilary Blacklock<sup>4</sup>, Simon Harrison<sup>5</sup>, Joy Ho<sup>6</sup>, Noemi Horvath<sup>7</sup>, Tracy King<sup>6</sup>, Hang Quach<sup>8</sup>, John McNeil<sup>1</sup>, Peter Mollee<sup>9</sup>, Chris Reid<sup>1</sup>, Brian Rosengarten<sup>10</sup>, Patricia Walker<sup>11</sup>, Erica Wood<sup>1</sup>, Andrew Spencer<sup>3</sup>

<sup>1</sup>Department of Epidemiology and Preventive Medicine, Monash University; <sup>2</sup>Sir Charles Gairdner Hospital, Perth; <sup>3</sup>Alfred Health-Monash University; <sup>4</sup>Middlemore Hospital, NZ; <sup>5</sup>Peter MacCallum Cancer Centre/Royal Melbourne Hospital; <sup>6</sup>Royal Prince Alfred Hospital, Sydney; <sup>7</sup>Royal Adelaide Hospital; <sup>8</sup>St.Vincent's Hospital, Melbourne; <sup>9</sup>Princess Alexandra Hospital, Brisbane; <sup>10</sup>Myeloma Australia; <sup>11</sup>Peninsula Health, Frankston

## Introduction

Early mortality in newly diagnosed multiple myeloma (NDMM) patients is infrequent in clinical trials. However higher rates of early mortality have been reported in population-level data. Identification of risk factors for early mortality may inform strategies to improve outcomes.

#### **Figure 1: Overall survival**



#### Table 2: Model results using CCA data

| Variable | Odds ratio<br>(95%CI) | р      |
|----------|-----------------------|--------|
| Age >75y | 2.75 (1.31, 5.71)     | <0.001 |

We aimed to describe early mortality in a realworld cohort of NDMM and explore factors predictive of early mortality.

# Methods

We included all NDMM patients in the Myeloma and Related Diseases Registry from Jan 2013-May 2017. Patient and disease characteristics at diagnosis were obtained from the registry.

Mortality data, including primary cause of death, was obtained from the registry as well as through linkage with national death registries in Australia and New Zealand.

Early mortality was defined as death from any cause within the first 12 months of diagnosis.

Associations between early mortality and patient characteristics (age, gender, co-morbidities), year of diagnosis, disease characteristics (international staging system [ISS], cytogenetics, lactate dehydrogenase [LDH], beta-2 microglobulin [B2MG], albumin), baseline renal function, blood count and EQ5D were assessed.

### Table 1: Associations with early mortality

|                                               | Alive at 12<br>months | Deceased at<br>12 months | р      |
|-----------------------------------------------|-----------------------|--------------------------|--------|
| Number                                        | 948/1039<br>(91.2%)   | 91/1039<br>(8.8%)        |        |
| Age at diagnosis,<br>median (IQR)             | 65.5<br>(57.6-73.0)   | 76.1<br>(67.3-82.7)      | <0.001 |
| ISS                                           | 2 (1-3)               | 3 (2-3)                  | <0.001 |
| ECOG performance status                       | 1 (0-1)               | 2 (1-2)                  | <0.001 |
| eGFR                                          | 71.0<br>(51.0-89.0)   | 49.5<br>(28.0-73.0)      | <0.001 |
| Platelet count (>150<br>x 10 <sup>9</sup> /L) | 750/877<br>(85.5%)    | 61/87<br>(70.1%)         | <0.001 |
| Serum Creatinine<br>(> 176.8 μmol/L)          | 92/865<br>(10.6%)     | 25/89<br>(28.1%)         | <0.001 |
| Lactate<br>Dehydrogenase (U/L)                | 189<br>(155-240)      | 223<br>(183-310)         | <0.001 |
| Albumin (g/L)                                 | 35 (30-39)            | 30 (26-36)               | <0.001 |
| Serum Beta 2<br>Microglobulin (mg/L)          | 3.6<br>(2.5-6.0)      | 7.0<br>(4.3-12.1)        | <0.001 |
| History of heart<br>disease                   | 80/948<br>(8.4%)      | 19/91<br>(20.9%)         | <0.001 |
| History of pulmonary disease                  | 39/948<br>(4.1%)      | 11/91<br>(12.1%)         | <0.001 |
| EQ5D Mobility                                 | 2 (1-2)               | 2 (2-3)                  | 0.011  |
| EQ5D Usual Activities                         | 2 (1-3)               | 3 (2-4)                  | 0.013  |
| EQ5D VAS                                      | 74 (66-85)            | 60 (48-75)               | 0.013  |

| Albumin           | 0.93 (0.89, 0.99) | 0.025  |
|-------------------|-------------------|--------|
| ISS               | 1.97 (1.08, 3.58) | 0.026  |
| LDH >300          | 3.13 (1.36, 7.19) | <0.001 |
| Cardiac disease   | 2.86 (1.25, 6.51) | 0.012  |
| Pulmonary disease | 3.22 (1.19, 8.74) | 0.022  |

Receiver operating characteristic area under the curve 0.82 (95% CI 0.76, 089)

Final variables included in the model using MI datasets is shown in Table 3:

#### Table 3: Model results using MI data

| Variable                                              | Odds ratio<br>(95%CI) | р      |
|-------------------------------------------------------|-----------------------|--------|
| Age > 75y                                             | 3.14 (1.92-5.13)      | <0.001 |
| ECOG performance status                               | 1.44 (1.08-1.93)      | 0.013  |
| ISS                                                   | 1.71 (1.18-2.49)      | 0.005  |
| Platelet count (>150 vs<br>≤150 x 10 <sup>9</sup> /L) | 0.54 (0.31-0.94)      | 0.029  |
| Cardiac disease                                       | 1.99 (1.08-3.65)      | 0.027  |
| Pulmonary disease                                     | 2.18 (0.99-4.82)      | 0.054  |
| LDH >300                                              | 2.11 (1.04-4.29)      | 0.039  |

Due to high rates of missing values, multiple imputation was performed using multivariate normal regression based on patterns in existing data.

Multivariable logistic regression models were developed using 1) the complete case ascertainment (CCA) data set and 2) the multiple imputation (MI) datasets. Of the two models, CCA relies on more restrictive assumptions regarding missing data compared to MI.

Variables with a significant association with one year mortality (p<0.05), and where the variance associated with the multiple imputation was less than 10% of the total variance in the MI dataset, were considered for inclusion in the model.

We also considered variables from a previously published predictive model<sup>1</sup> for 6-month mortality.

## Results

We show either median with interquartile range or, for binary variables, fractions with associated percentages, Only includes patients who died less than twelve months after diagnosis or with at least six months follow up

# Predictive models for early mortality

Variables considered for inclusion in the multivariable model were those found to have significant association on univariate analysis as well as those found to be significant in the model by Terebelo et al<sup>1</sup>. Models were developed first for the CCA dataset and then repeated using the MI datasets.

Receiver operating characteristic area under the curve 0.79 (95% CI 0.74, 084)

# Conclusions

In a large cohort of NDMM patients, early mortality occurred in 8.8% with disease accounting for more than half of all deaths. This rate of early mortality is lower than reported in other studies<sup>1</sup>.

Factors independently associated with early mortality were age at diagnosis, ECOG performance status, ISS stage, platelet count <150 x 10<sup>9</sup>/L, cardiac disease and serum LDH levels. These are similar to those previously reported in other cohorts.

## **Acknowledgement:**

The authors would like to thank the patients, hospitals, clinicians and research staff at participating institutions for their support of the MRDR. The MRDR has received funding from the following companies: Amggen, Bristol-Myers Squibb, Celgene, Gilead, Janssen, Novartis and Takeda.

1039 NDMM patients were included in the analysis. Overall survival for the included cohort is shown in Figure 1.

Early mortality was reported in 91 (8.8%) patients.

Patient characteristics according to early mortality are shown in Table 1.

Primary cause of death was disease-related in 53 (58%), infection 4 (5%), non-disease related 13 (14%) and unknown in 21 (23%) of cases

Final variables included in the model using the CCA dataset are shown in Table 2:

### References

1 - Terebelo H, Srinivasan S, Narang M, et al. Recognition of early mortality in multiple myeloma by a prediction matrix. Am J Hematol. 2017;92:915–923.



## **Contact us**

Myeloma and Related Diseases Registry School of Public Health and Preventive Medicine, Monash University

Email: sphpm-myeloma@monash.edu Website: https://mrdr.net.au Phone: +61 3 1800811326

